
N91-20681

EXODUS: Integrating Intelligent Systems for Launch Operations Support

Richard M. Adler and Bruce H. Cottman

Symhiotics, Inc.

875 Main Street

Cambridge, MA 02139

Abstract

NASA Kennedy Space Center (KSC) is developing knowledge-

based systems to automate critical operations functions for

the Space Shuttle fleet. Intelligent systems will monitor ve-

hicle and ground support subsystems for anomalies, assist in

isolating and managing faults, and plan and schedule Shuttle

Operations activities. These applications are being developed

independently of one another, using different representation

schemes, reasoning and control models, and hardware plat-

forms. KSC has recently initiated the EXODUS project to

integrate these "standalone" applications into a unified, co-

ordinated intelligent operations support system. EXODUS

will be constructed using SOCIAL, a tool for developing dis-

tributed (intelligent) systems. This paper describes EXODUS,

SOCIAl,, and initial prototyping efforts using SOCIAL to in-

tegrate and coordinate selected EXODUS applications.

Section 1 Introduction

Over the past decade, NASA Kennedy Space Center (KSC) has

developed knowledge-based systems to increase automation of

operations support tasks for the Space Shuttle fleet. Major

applications include: monitoring, fault isolation and manage-

ment. and control of vehicle and ground support systems; oper-

ations support of the Shuttle Launch Processing System (LPS);

and plamfing and scheduling of Shuttle and payload processing

activities.

Initial prototypes have been tested successfully (off-line) in

support of several Shuttle missions. KSC is currently extend-

ing and refining these systems for formal field testing and val-

idation. The final deployment phase of development will inte-

grate the knowledge-based applications, both with one another

and with existing Shuttle operations support systems.

Integration will require solutions to many challenging prob-

lems. KSC's knowledge-based applications were developed

independently of one another, using different representation

schemes, reasoning and control models, software and hard-

ware platforms. Knowledge and data bases are application-

specific, as are external interfaces to users, LPS software, and

LPS data channels. In addition, KSC's knowledge-based ap-

plications lack capabilities for modeling their peer systems and

for comnmnicating with one another across heterogeneous host

platforms. This precludes working together cooperatively, for

example, by sharing information and by coordinating comple-

mentary activities, to solve problems that the systems are in-

capable of resolving individually.

KSC has recently initiated the EXODUS project (Expert Sys-

tems for Operations Distributed Users) to investigate and ad-

dress these difficult issues. A high-level integration architec-

ture has been designed. The design incorporates a hierarchi-

cal distributed control model to coordinate cooperative efforts

among KSC's intelligent operations support applications. In

order to refine, test, and implement this design, KSC is fund-

ing Symbiotics, Inc. to develop SOCIAL, a generalized tool for

integrating and coordinating distributed systems comprised of

heterogeneous intelligent and conventional elements. Symbi-

otics is also developing proof-of-concept prototypes to validate

SOCIAL and the proposed EXODUS architecture.

The remaining sections of this paper describe, in order: the

EXODUS problem domain and system design; the SOCIAL

development tool; and the demonstration prototypes that in-

tegrate and coordinate selected knowledge-based applications

at KSC.

Section 2 EXODUS

2.1 Space Shuttle Ground Operations

Processing, testing, and launching of Shuttle vehicles takes

place at facilities dispersed across the KSC complex, often us-

ing complex Ground Support Equipment. For example, Or-

biters are mated to external tanks and solid rocket engines

using cranes at the Vehicle Assembly Building. Propellant

storage and loading systems are used to fuel Shuttle vehicles

mounted on Mobile Launch Platforms at. Launch Pads.

The Launch Processing System (LPS) supports all Shuttle

preparation and test activities from arrival at KSC through

to launch. The LPS provides the sole direct real-time inter-

face between Shuttle engineers, Orbiter vehicles and payloads,

and associated Ground Support Equipment [He87]. Four in-

dependent physical copies, called Firing Rooms, can support

simultaneous processing of multiple Shuttle vehicles, LPS soft-

ware development, and launch team training.

A Firing Room is an integrated network of computers, soft-

ware, displays, controls, switches, data links and hardware

interface devices (cf. Figure 1). The computers in a Fir-

ing Room are organized in a star network. The star's lo-

cus, called the Common Data Buffer, collects data, trans-

fers data to LPS peripheral storage subsystems, and mediates

324

computer-to-computer communications, which are concurrent

and asynchronous. During peak (launch) conditions, a Firing

Room handles thousands of commands and measurements per
minute.

Orbiter Processing Vehicle Assembly Mobile Launch ShuttleOn-board
Facility Bldg Platform Systems

1-_-_ 1-_-_1 I-_ I-_"1 ••• I-G-_-I

®
Data Buses, Hardware Interface Devices, Telemetry Links,

Firing Room Elements

Remote Switching Assembly

@@@ @@@
Common Data Buffer I

_ _ "" " _ I Peripheral Storage/Ic;onsole I I & other subsystemsI

Figure .1: Architecture of an LPS Firing Room

Firing Room computers are configured to perform independent

LPS functions through application software loads. Shuttle en-

gineers use computers configured as Consoles to remotely mon-

itor and control specific vehicle and Ground Support systems.

Each such application Console communicates with an asso-

ciated Front-End Processor computer that issues commands,

polls sensors, and preprocesses sensor measurement data to

detect significant changes and exceptional values. These com-

puters are connected to data busses and telemetry channels

that interface with Shuttles and Ground Support Equipment

through switching assemblies in each Firing Room.

2.2 EXODUS Applications

EXODUS will integrate and coordinate knowledge-based ap-

plications that span KSC's major processing functions - Shut-

tle and LPS operations and planning and scheduling of such

operations. Tasks in all three areas are labor- and expert-

intensive. KSC's intelligent systems program will: increase

automation of operations support tasks, alleviating labor re-

quirements and costs; improve safety by standardizing (expert)

task performance and increasing accessibility of data on prob-

lems and problem solutions; and preserve expertise that would

otherwise be lost when veteran NASA engineers change jobs or

retire. This section summarizes the primary KSC applications

in the EXODUS framework.

The LPS Operations team ensures that the four Firing Rooms

are available continuously, in appropriate error-free configura-

tions to support Shuttle engineering test requirements such as

Launch Countdown or Orbiter Power-up sequences. OPERA

(for Operations Analyst) consists of an integrated collection of

expert systems that automates some of these critical support

functions [Ad89b].

OPERA's primary expert system monitors a Firing Room for

anomalies and assists LPS Operations users in isolating and

managing faults by recommending troubleshooting, recovery

and/or workaround procedures. OPERA taps into and in-

terprets a data stream comprised of error messages triggered

by the LPS Operating System. Messages signal anomalous

events such as improper register values or expiring process

325

timers. OPERA also incorporates two secondary expert sys-

tems, which interface with and maintain data and knowledge

bases that track open and recurring problems across all four

Firing Rooms. They assist the primary expert by retrieving

fault reports that provide relevant precedents to current prob-

lem symptoms.

The LPS Operations team replaces problem Firing Room com-

puters with standby spares to restore on-line functionality to

Shuttle engineering end-users. Suspect or faulty computers are

then diagnosed and repaired off-line by an LPS Maintenance

organization, which is developing a supporting Remote Moni-

toring and Maintenance Subsystem (RMMS). RMMS consists

of custom hardware implants that capture memory dumps from

failing Firing Room computers, and a tap to the Common Data

Buffer for retrieving and storing dump data files. An associ-

ated Memory Dump Analyst provides an object-oriented in-

terface for inspecting memory dumps and a shallow-knowledge

expert system that automatically diagnoses a subset of com-

puter faults.

KSC has developed a model-based tool called KATE (or Knowl-

edge Based Autonomous Test Engineer) for building intelligent

systems to automate monitoring, diagnosis, and control tasks

for Shuttle Ground Support Equipment [Fu90]. These systems

are comprised of electromechanical components including re-

lays, pumps, blowers, ducts, heaters, and embedded sensors.

KATE extends and generalizes on LES, an early model-based

diagnostic system that supports the the Liquid Oxygen fuel

loading system [Sc87].

KATE applications monitor Firing Room Console data while

simultaneously running a behavioral model simulation for their

target Ground Support Equipment system. Discrepancies be-

tween actual data and values predicted by the model trigger the

model-based diagnostic module. Control capabilities can he

used to test diagnostic hypotheses (via sensor requests) and to

issue corrective commands. A KATE-based application called

LOX (an extended reimplemented version of LES) is currently

being validated in field tests. Another KATE system (ECS)

has been developed to help maintain environmental controls

for the Shuttle cargo bay when the vehicle is at a Launch Pad.

EXODUS will also integrate knowledge-based tools for plan-

ning and scheduling resources and activities for payload inte-

gration and Shuttle processing [Mu88,Zw89]. Further expert

systems are being designed to assist LPS Operations in con-

figuring Firing Room switching assemblies and to automate

Shuttle engineering activities at application Console stations.

2.3 EXODUS Architecture

LPS Firing Room (ModComp-II) computers were built in the

early 1970s. Their limited memory capacity is largely occupied

by LPS Operating System and Shuttle user application soft-

ware. Accordingly, KSC's knowledge-based systems have been

implemented on other platforms, including Sun Workstations,

Texas Instruments Explorer Lisp Machines, and PCs.

The proposed EXODUS architecture (cf. Figure 2) will use

an Ethernet local area network for physically connecting in-

telligent application hosts. Intelligent systems will access LPS

Firing Room data via an interface between the Common Data

Buffer and a data concentrator. This interface currently ex-

tracts memory dump data for RMMS and Operating System

error messages for OPERA. Extensions to support data and

ORIGINAL PAGE I_

OF POOR QUALITY

Firing Room .,_ Data] _ IConso,s-12---- Concentrator1 ,Exp. Sys. _ _ _

I Common Data Buff_._l + t +
_ 77 _ / I Planning & I

[Scheduling Tools J

Figure .2: EXODUS Architecture

control interfaces for KATE applications are being designed.

A centralized interface design is necessary for two reasons: (a)

the limited number of free ports into Common Data Buffers;

and (b) the major testing effort is required to validate and ver-

ify new LPS interfaces with respect to NASA's stringent safety

requirements.

The proposed integration design for EXODUS adopts a server-

based architectnre: critical data and knowledge bases in EX-

ODUS applications will be redistributed to server nodes com-

prised of dedicated data and knowledge base management sys-

tems running on high performance, large memory capacity

hardware platforms. This design approach promotes sharing of

symbolic models of common utility across applications: Shut-

tie and LPS system structures, behaviors, and bodies of oper-

ational expertise. Maintenance, access control, and common-

ality of interfaces will also be facilitated.

Redistributing large data and knowledge bases to server plat-

forms will also reduce memory and performance burdens from

EXODUS applications on their hosts. This will become critical

since plans call for porting EXODUS applications over to the

new Console colnputers being procured for a modernization of

Firing Rooms in the mid-1990s.

The critical requirements for the proposed EXODUS integra-

tion architecture are: (a) non-intrusive communication capa-

bilities for moving data and commands among heterogeneous

applications and information resources; and (b) intelligent dis-

tributed control models to coordiqate the activities of EXO-

DUS applications. The following sections describe develop-

ment efforts for these enahling technologies.

Section 3 The SOCIAL Development Tool

Obstacles to integrating "standalone" intelligent systems are

not u,fiqne to KSC or to operations support. Analogous diffi-

culties arise in other domains including: battle management;

decision support; manufacturing process control; air traffic

control; concurrent engineering environments; power genera-

tion plants; and power transmission and communication net-

works,

These domains encompass multiple problems of varying com-

plexity, whose solutions may be independent or only weakly de-

pendent upon one another. Different problem-solving architec-

tures are appropriate for disparate tasks. Complex computer

systems already exist, for storing data and executing conven-

tional programs that automate routine activities (e.g., for sen-

sor and equipment control, instrumentation, event trapping,

and bounded scheduling task._). Software and hardware plat-

forms arc typically heterogeneous across intelligent and con-

ventional applications. Finally, a priori design of comprehen-

sive integration strategies was generally infeasible in the tech-

nology development or transfer environments where intelligent

systems currently being deployed were initiated.

SOCIAL is a generalized tool that is being built for developing

distributed systems and for integrating existing systems "after

the fact" [Ad89a,Adg0]. SOCIAL will provide the following

broad functional capabilities and attributes:

• a high-level, modular distributed communications capa-

bility for passing information between applications based

on heteroge,mous languages, platforms, networks, and

network protocols. This subsystem is already available

as a standalone commercial product called MetaCovrier;

• minimally intrusive data and control interfaces to new

and existing systems, both conventional and intelligent,

including data feeds and applications developed using

commercial AI shells and relational database manage-

ment systems (RDBMSs);

• portability across heterogeneons software and hardware

platforms;

• predefined intelligent control models to coordinate coop-

erative problem-solving activities of distributed (knowl-

edge based) applications with heterogeneous internal con-

trol and communication architectures;

• tools for customizing and extending existing control mod-

els and interfaces.

SOCIAL's architecture is based on a layered library of object-

oriented building blocks. The highest level objects are called

Agents. Distributed systems are constructed by instantiating

suitable Agent types, embedding application ele,nents iu these

instances, and connecting the resulting Agents together. Agent

instances provide generic distributed services to their embed-

ded application elements. These services, implemented via

lower-level object-oriented building blocks, inch, de distributed

communication, data and knowledge access, and control (e.g.,

process coordination, concurrency and reliability management).

Application elements access the distributed services of their

embedding Agents through a high-level Message-based inter-

face. For example, an application comnnmicates with another

via messages of the form (Tell :agent X :system Y message-

contents). For each application Agent, the developer must de-

fine the expected form of iucoming messages (i.e. an argument

list), along with three procedural methods that specify: how

to parse and process messages; test predicates for determining

completion (i.e., in case the Agent dispatches messages to o,,e

or more other Agents for intermediate processing); and what

326

results the embedded receiving application is to return. Aux-

iliary methods can be defined to simplify the organization of

these primary Agent methods.

Message protocols determine the kind of communication be-

havior required for Agent interactions. The "Tell" protocol

signals asynchronous behavior whereas "Tell-and-Block" in-

dicates synchronous, "wait-and-see" behavior: an Agent that

sends a 'lell message can go on to perform other tasks pend-

ing returning information, whereas a Tell-and-Block message

implements a function call and return control model.

All distributed control and information access behaviors are

defined in terms of MetaCourier's message--based communica-

tion services, the substrate layer of the SOCIAL architecture.

Distributed control is achieved through Agents autonomously

invoking other Agents. For example, concurrency is accom-

plished by asynchronous message-passing to invoke multiple

Agents more or less simultaneously. Similarly, parallelism a-

mounts to dispatching subtasks (single or multiple instruction

with multiple data) to a set of server Agents with a broad-

cast protocol of batched Tells. Non-intrusive access to, and

integration of, passive data resources and existing standalone

applications is accomplished through "wrapper" Agents that

define suitable external command and data interfaces.

SOCIAL's message-based interfaces enforce a clean partition-

ing between application-specific functionality and predefined

services such as distributed communications. To ensure porta-

bility, SOCIAL further isolates Agent dependencies on pro-

cessing platforms, networks, and software environments (e.g.

cpu, operating system, network type and host address, lan-

guage compiler and editor), in separate (shared) "tlost" and

"Environment" objects. SOCIAL's MetaCourier subsystem

uses message protocols and Host and Environment objects as-

sociated with the sending and receiving Agents to determine

how to transmit messages across heterogeneous hardware and

software platforms transparently. By separating and conceal-

ing the mechanical complexities of distributed processing, SO-

CIAL frees developers to concentrate on the architecture and

behavior of their distributed applications. The first version of

SOCIAL is scheduled to be completed at the end of 1990.

Section 4 EXODUS Prototypes

4.1 Distributed Data Transfer

The Data Concentrator is a critical component in the EX-

ODUS architecture. It must concentrate, classify, and route

real-time data to the intelligent subsystems responsible for

monitoring Ground Support Equipment and Firing Rooms and

isolating faults. A proof-of-concept simulation of these data

transfer functions was constructed using SOCIAL. Figure 3

depicts the Firing Room data sources, EXODUS knowledge-

based systems, and and hardware and software platforms for

those systems. Network connections consist of Ethernet media

and TCP/IP protocols.

The client/server Remote Procedural Call (RPC) model is the

de facto communications standard today. This model is in-

herently synchronous, asymmetric, and pairwise: active clients

request and block for services from reactive servers and a given

client can only interact with a single type of server. Syn-

chronous processing is unsuitable for the high volume data

transfers required by EXODUS. The client-server model also

forces the (active) data concentrator to be modeled as a router

that sorts and feeds data to a set of client processes that use

"requests" to transmit the data to (passive) EXODUS "server"

applications. In contrast, SOCIAL's MetaCourier layer pro-

vides an asynchronous, symmetric, and peer-to-peer model. A

single Agent can act as a client or a server or operate in both

roles, and a "client" Agent can interact with multiple "server"

Agents. In addition, behaviors can be inherited and/or spe-

cialized across Agent types.

The EXODUS simulation defines a single Data Concentrator

Agent and a class of Data Injector Agents that are co-resident

with the various intelligent Operations Support applications.

The Data Concentrator receives and preprocesses Firing Room

data. The concentrator agent then classifies and encapsu-

lates the resulting data in MetaCourier messages, which are

dispatched directly and &synchronously to relevant Injector

Agents. Injectors inherit the structure and functionality of the

Injector Agent class, specialized by a single dispatch method

for injecting the data to the input interface for a particular

application. The OPERA Data Injector, shown below, inserts

data into a First-In-First-Out input buffer for CCMS Operat-

ing System messages. The RMMS Memory Dump Analyst In-

jector simply notifies users that new computer memory dumps

are available for inspection.

Firing Roorr LPS

,Iorer / LISP TI Explorer / LISP / KEE TI Explorer / LISP / KEE

Figure .3: SOCIAL Exodus Data Transfer Simulation

OR1G|NAL PAGE

OF' POOff QUALITY

327

(defagentOPERA-DATA-INJECTOR
:sys *opera-host* ;;;OPERA host (vble)

:environ _exodus

:args ($datum) ;;;msg structure

:lifetime :image

:type (data-injector) ;;; Agent class

:documentation

"This Agent inserts LPS Operating System

error messages into the FIFO queue that

serves as the OPERA LPS Data Interface"

:in-filter ;;; inherited method/behavior

;;; to process incoming msg

(sendx :self :dispatch-datum Sdatum)

:methods

;;;OPERA-specific injector data interface

((:dispatch-datum ($data)

(unless (string = Sdata)

(eval '(kee::add.value

'kee::opera-controller

'kee::opera-ccms-data-interface

,$data))))))

4.2 Distributing OPERA's Expert Systems

The capability to distribute a complex intelligent application

across multiple platforms is critical for realizing EXODUS's re-

source server architecture. Physical distribution is clearly im-

portant for performance: time-intensive processes that search

rule-bases or databases should be isolated, allocating dedi-

cated computing resources to critical flmctions such as real-

time data monitoring. Distribution of large knowledge bases

also reduces memory loading. Because EXODUS encompasses

existing applications, it must also be possible to redistribute

application elements transparently and non-intrusively.

qb demonstrat.e these capabilities, SOCIAL was used to phys-

ically distribute the OPERA system OPERA is a logically

distributed system that integrates and coordinates multiple

expert systems that were originally developed as co-residents

on a single platform. A control module coordinates the ac-

tivities of OPERA's expert systems and manages all exter-

nal interfaces. Expert. systems request services from the Con-

troller, which routes those tasks to appropriate servers. Expert

systems post and retrieve task results from a shared memory

"Bulletin-Board" on the Controller. OPERA's expert systems

and Controller are integrated by embedding them within in-

stances of a generic distributed blackboard structure, which

provides standardized communications protocols [Ad89e].

Physical (re)distribution of OPERA elements was accomplished

as follows (ef. Figure 4). The three primary blackboard pro-

tocols were altered to redirect communications as messages to

MetaCourier Agents rather than as postings to other black-

boards. Second, the OPERA Controller's service request rout-

ing table was extended to indicate a MetaCourier agent and

host platform for each OPERA subsystem/blackboard. Third,

MetaCourier Agents were written for each blackboard. The

action of those Agents is simply to execute a protocol behav-

ior that posts a message as an entry to the relevant structure

on their associated blackboard. Finally, because distributed

expert systems no longer have direct access to all OPERA in-

formation, additional messages were built into the protocols to

ensure that information required to perform tasks was trans-

mitted prior to task requests.

The redistribution experiment required roughly four days and

one hundred lines of code. Extending the blackboard archi-

tecture using SOCIAL was quite simple. However, difficul-

ties arose because the expert systems that were distributed

depended on several common utility functions and data struc-

tures that were scattered across multiple source files and knowl-

edge bases. The lesson drawn from this exercise is that these

dependencies should be tracked as part of a standard devel-

opment discipline for distributed systems. Such specifications

would greatly simplify the (re)organization of system code and

the identification of knowledge structures that need to be copied

remotely.

4.3 Distributed Data and Knowledge Access

A third EXODUS requirement will be tools for developing non-

intrusive interfaces to standalone applications and information

resources. SOCIAL is addressing this need through "wrapper"

Agent Types called Receptionists, which define bidirectional

interfaces for passing control (i.e., commands), and data to

the embedded resource or program.

Databases and application programs are often constructed us-

ing commercial development tools. The design of Receptionists

for such systems can be simplified by abstracting the application-

Problem Impact [
Analyst Expert
System (PIA)

Problem Tracking]Knowledge Bases

Platform 1

Configuration Status

& Fault Symptom Dat_
PIA Search Requests

Fault Precedents

(i.e. Search Results)

I OPERA External Interfaces

All other Knowledge Bases
Firing Room Status Data
Fault Analyses

Platform 2

Figure .4: Using SOCIAL to Distribute OPERA

328

independent aspects of the control and data interface into a

standardized, specialized Receptionist Agent type called a Gate-

way. Integrating an application element using a Gateway re-

duces to defining the application_specific aspects of the in-

terface: the Gateway understands predefined query and com-

mand types which developers use to write specific queries or

commands that name particular application objects and object

attributes.

The basic operation of Gateways (or Receptionists) is depicted

in Figure 5. An application's Agent sends a message to a

Gateway Agent to access a protected resource or program. De-

pending on the situation, messages might contain data queries

(i.e., read or write requests), or other commands to an appli-

cation. Queries and commands may be expressed in a uni-

form, canonical language. An intelligent system might initiate

queries or commands in its own development environment lan-

guage through its Gateway to other SOCIAL Agents (including

other Receptionists).

Gateways contain an interface library that maps canonical SO-

CIAL queries and commands into the language format of the

relevant DBMS or shell environment, and vice versa. (Com-

mands can be formulated in the target system's native lan-

guage if desired, and will be passed through without alter-

ation.) Gateways will also manage common exceptions (e.g.,

failed references or transactions), platform-specific data type

conversions, and security features for restricting access to au-

thorized Agents.

Receptionist Agent A

Application

Application Interface
Protocol Library

Data and Command
Translation Services

Distributed
Control Services

MetaCouriar
Corn m unicationServices

Gateway Agent B

Data or Kn-Based System

Application Interface
Protocol Library

Data and Command
Translation Services

Distributed
Control Services

MetaCourier
Corn municationServices

I "------- I
Data in canonical r_'presentation and/or

Commands in canonical (or native target) representation

Figure .5: Integrating standalone systems using Gateways

An EXODUS simulation (cf. Figure 6) is currently being de-

signed and implemented to demonstrate Gateway Agents for

KEE, a LISP-based AI shell, CLIPS, NASA's C-based rule

shell, and an Oracle relational DBMS. Briefly, OPERA will

receive LPS error messages that indicate a failure in a Firing

Room computer. OPERA will then request a reconfiguration

action from the expert system for the Firing Room Switching

Assembly. OPERA will then update its model of the Firing

Configuration Data Problem Report

Switching Request queries/upq.a.,tes

; t sw.c.,o0.o----su,so I
Ill Switcher ilil]_i_,'_ii_] l_ifPr°blem "tracking]

t_i_ I__!] _ DB {,,mulated) [_|

Figure .6: Distributed Data/Knowledge Access for EXODUS

÷

Room based on the Switcher expert system and formulate error

report entries to the Problem-Tracking Database.

4.4 Distributed Control

Aside from a robust communications substrate to provide the

basic integration framework, the most important functional

requirement for EXODUS is a capability to coordinate the ac-

tivities of member applications. The proposed EXODUS ar-

chitecture calls for a hierarchical distributed control model:

a high-level Controller module will direct the intelligent ap-

plications described in Section 2 based on a global model of

EXODUS subsystems, their associated KSC operations sub-

domains, and their relationships to one another.

SOCIAL will address this requirement through Agent types

called Managers. A Manager Agent identifies all member (or

subordinate) Agents by logical name and location, and also de-

fines a distributed control model for organizing member Agents

to work together cooperatively. It may also define specialized

communication protocols for its members (e.g., one-to-many

broadcast), and manage communication between member and

outside Agents. Managers often provide a shared memory store

of current problem-solving data for its members. Finally, Man-

ager Agents may themselves be members of more complex or-

ganizations, subordinate to other Manager Agents.

The first Manager Agent type to be built for SOCIAL will be a

reimplementation of OPERA's hierarchical distributed black-

board model (HDB) [Ad89c]. The HDB incorporates a routing

table of member Agents describing their services and locations.

The HDB also contains a centralized Bulletin-Board for expert

systems to post service requests and post and retrieve request

responses. The HDB control model routes all posted requests

to suitable servers and orders and controls the activations of

member expert system Agents. Member Agents can only com-

municate with one another indirectly, through the HDB Man-

ager, using a common set of utility protocols for posting tasks

to the HDB Manager's Agenda and posting results or checking

for results on the HDB Manager's Bulletin-Board.

An EXODUS prototype is being planned that will utilize a

Controller based on SOCIAL's HDB Manager Agent (cf. Fig-

ure 7). This Agent will coordinate KSC's intelligent systems

for Shuttle and LPS Operations support to collectively solve

a fault isolation problem that no single system could resolve

individually. A test scenario will be defined in terms of LPS

Operating System messages, Ground Support Equipment data,

and Firing Room CPU memory dumps. The test scenario will

simulate a Firing Room problem that may be caused by one

of several possible fault candidates.

The EXODUS Controller will initialize member Agents and

the Data Concentrator interface to a Firing Room. OPERA

will process LPS error messages and inform the Controller of

possible Firing Room anomalies. Because Firing Rooms lack

adequate built-in test capabilities, OPERA can isolate fault

candidates but cannot test them to produce an actual diagno-

sis. The EXODUS Controller will invoke the RMMS Memory

Dump analyst expert system to investigate the possibility of a

problem Console computer and also check KATE/LOX Agent

to investigate the possibility of a failure in the Liquid Oxy-

gen Subsystem. It will then use the hypothesis test results to

reduce the set of fault candidates and display the results to

Operations users.

329

/

hyp. test comrnan._ds
",91_

+ I I I

Expert System_._.::::.._::i:.:.::..._..:.__..... i_!! i_:/:

t_ 1 "+

lii[RMMS Memory_iit

ii[Dump Analyst _ii:t:,..

Figure .7: SOCIAL Exodus Distributed Cooperative Control

Summary

NASA Kennedy Space Center has initiated the EXODUS project

to integrate and coordinate knowledge-based systems tbat are

helping to automate Ground Operations activities in support

of the Space Shuttle fleet. Individual applications were de-

signed for "standalone" use with heterogeneous architectures,

languages, and hardware platforms. Similar requirements ex-

ist for integrating conventional and knowledge-based systems

in other Government and commercial domains. To minimize

costly re-engineering, generalized integration tools must be de-

veloped that are non-intrusive, modular, and extensible.

KSC is using the SOCIAL development tool from Symbiotics,

Inc. in the EXODUS effort. SOCIAL enforces a clear separa-

tion between application-specific functionality and standard-

ized services for distributed communication, control, and data

and knowledge access. Application elements invoke these ser-

vices through high-level message-based interfaces to "wrap-

per" Agents, concealing the complexity and heterogeneity of

the underlying distributed computing mechanisms and pro-

cessing environments.

Proof-of-concept prototypes are described for validating the

proposed EXODUS architecture using SOCIAL . These pro-

totypes demonstrate SOCIAL's capability to support nonin-

trusive: distributed data transfer; physical distribution of a

complex application comprised of previously co-resident ex-

pert systems and knowledge bases; cooperation of expert sys-

tems and data bases across multiple development tools; and

hierarchical distributed coordination of standalone intelligent

systems to solve difficult problems collectively.

Acknowledgments

Development of MetaCourier has been sponsored by the U.S.

Army Signal Warfare Center, under Contract No. DAABI0-

87-C-0053. Development of SOCIAL has been sponsored by

NASA Kennedy Space Center under contract No. NAS10-

11606. Astrid Heard initiated and oversees the EXODUS project

at KSC. Rick Wood designed and implemented SOCIAL's dis-

tributed data and knowledge access capabilities. Pat Pinkowski

and R. Bruce tloskeu have provided valuable assistance in

preparing EXODUS demonstrations at KSC.

Bibliography

[Ad89a] R.M. Adler, B. H. Cottman. "A Development Frame-

work for Distributed Artificial Intelligence." Proceed-

ings Fifth Conference on AI Applications, Computer

Society of the IEEE. Miami, FL, March 6-10, 1989.

[Ad89b] R.M. Adler, A. lleard, and R. B. Hoskeu. "OPERA

- An Expert Operations Analyst for A Distributed

Computer Network." Proceedings Annual AI Systems

in Government Conference, Computer Society of the

IEEE. Washington, D.C., March 27-31, 1989.

[Ad89c] R.M. Adler. "A Distributed Blackboard Arcbitecture

for Integrating Loosely-Coupled Knowledge-Based

Systems." Intelligent Systems Review. 1, 4, Summer,

1989, Association for Intelligent Systems Technology,

E. Syracuse, NY.

[Ad90] R.M. Adler, B. II. Cottman. "A Development Frame-

work for AI Based Distributed Operations Support

Systems." Proceedings Fifth Conference on AI for

Space Applications. tluntsville, AL, May 21-23, 1990.

[Fu90] S. Fulton and C. Pepe. "An Introduction to Model-

Based Reasoqing." AI Expert. 5, 1, January, 1990.

[He87] A.E. Heard. "The l,aunch Processing System with a

Future Look to OPERA." Acta Astronautica. IAF-87-

215, 1987.

[Mu88] A.M. Mulvehill. "A User Interface for a Knowledge-

Based Planning and Scheduling System." 1EEE

Transactions on Systems, Man, and Cybernetics.

SMC-18, 4, July/Angust 1988.

[Sc87] E.A. Scarl, J.R. Jameson, C.I. DeLaune."Diagnosis

and Sensor Validation Through Knowledge of Struc-

ture and Function." IEEE Transactions on Systems,

Man, and Cybernetics.SMC-17, 3, May/June 1987.

[Zw89] M. Zweben and M. Eskey. "Constraint Satisfaction

with Delayed Evaluation." Proceedings, llth IJCA1.

Detroit, MI, Aug 20-25, 1989.

330

